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a de même en faisant le changement de variable y = (1 + u)x
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On conclut donc que Sn suit la loi Γ(n+1, 1). Par ailleurs, pour x ∈ R :
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en fonction de celle de Sn, on obtient
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ce qui donne le résultat voulu par identification des fonctions hn et an.
4. Comme Sn−n√

n
converge en loi vers la variable gaussienne standard N ,

on sait par définition de gn que lorsque n tend vers l’infini,∫ 1
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5. Remarquons que(
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Ainsi, hn converge ponctuellement vers 1√
2π
e−x2/2. De plus, pour n

suffisamment grand, hn est dominée par h(x) = e−x2/3, qui est une
fonction intégrable sur R. Ainsi, on conclut par le théorème de conver-
gence dominée. Autre solution :
On peut noter que hn(x) = 1√

2π
1]−1,+∞[( x√

n
) exp(−x2ψ( x√

n
)) avec,

pour x > −1, ψ(x) = x−log(1+x)
x2 . Un développement limité donne

classiquement limx→0 ψ(x) = 1
2 , donc hn converge ponctuellement vers

x 7→ 1√
2π
e−x2/2. De plus, comme ψ(x) ≥ 0 pour tout x > −1, hn est

dominée par h(x) = 1√
2π

. Ainsi, on conclut par le théorème de conver-
gence dominée.


